

EXERCISE 2.1

QUESTION 1.	Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:							
	(<i>i</i>) $4x^2 - 3x + 7$	(ii)	$v^2 + \sqrt{2}$	(iii) $3\sqrt{t}$	$+t\sqrt{2}$			
	(<i>iv</i>) $y + \frac{2}{y}$	(v)	$x^{1\theta} + y^3 + t^{5\theta}$					
SOLUTION.	(<i>i</i>) We have, $4x^2 - 3x$:+7						
	The given express	sion has single variab	le x.					
	The index of x is	The index of x is whole number, <i>i.e.</i> , 2.						
	Hence, the given	Hence, the given expression is polynomial in one variable. Ans.						
	(<i>ii</i>) In $y^2 + \sqrt{2}$, the in	(<i>ii</i>) In $y^2 + \sqrt{2}$, the index of y is a whole number, <i>i.e.</i> , 2. So it is a polynomial in one variable y.						
	(<i>iii</i>) We have, $3\sqrt{t} + t\sqrt{2} = 3t^{1/2} + \sqrt{2}t$, here the exponent of the first term is $\frac{1}{2}$, which is not a whole number. Therefore, it is not a polynomial .							
	(<i>iv</i>) We have, $y + \frac{2}{y} = y + 2y^{-1}$, here the exponent of the second term is -1, which is not a whole number							
	(v) We have $x^{10} + v^3 - v$	+ t^{50} It is not a polyn	omial in one variable	e as three variables x	v t occur in it			
QUESTION 2.	Write the coefficients	of x^2 in each of the	following:		, , , , , , , , , , , , , , , , , , , ,			
	(i) $2 + x^2 + x$	(<i>ii</i>) $2 - x^2 + x^3$	(iii) 7	$\frac{\pi}{2}x^2 + x$	(iv) $\sqrt{2}x - 1$			
SOLUTION.	(i) Coefficient of x^2 .	in $2 + x^2 + x$ is 1.		2	(**) 124 1			
	(<i>ii</i>) Coefficient of x^2 : in $2 - x^2 + x^3$ is -1.							
	(<i>iii</i>) Coefficient of x^2 :	in $\frac{\pi}{2}x^2 + x$ is $\frac{\pi}{2}$.						
	(<i>iv</i>) Coefficient of x^2 :	$in \sqrt{2}x - 1$ is 0.			Ans.			
QUESTION 3.	3. Give one example of each of a binomial of degree 35, and of a monomial of degree 100.							
SOLUTION.	Binomial of degree 35	may be taken as $5x^3$	5 + 10x.					
	Monomial of degree 1	00 may be taken as 5	bx^{100} .		Ans.			
QUESTION 4.	write the degree of et	ich of the following	polynomials:					
	(i) $5x^3 + 4x^2 + 7x$	(<i>ii</i>) 4 – j	v ² (iii	$5t - \sqrt{7}$	(iv) 3			
SOLUTION.	(1) We have, $5x^3 + 4x^2 + 7x$, the highest power term is $5x^3$ and the exponent is 3. So, the degree is 3 . (ii) We have $4 - x^2$. The highest power term is $-x^2$ and the exponent is 2. So, the degree is 3 .							
	(ii) We have $5t - \sqrt{7}$ the highest power term is 5t and the exponent is 1. So the degree is 1							
	(<i>iv</i>) We have, 3. The only term here is 3 which can be written as 3x and so the exponent is 0. Therefore							
	the degree is 0.				Ans.			
QUESTION 5.	Classify the following	g as linear, quadratic	and cubic polynom	ials:				
	(<i>i</i>) $x^2 + x$	$(ii) x - x^3$	(<i>iii</i>) $y + y^2 + 4$	(iv) 1 + x	(v) 3t			
	$(vi) r^2$	(vii) $7x^3$	т. ч. т. т . ч					
SOLUTION.	(<i>i</i>) The highest degre	e of x in $x^2 + x$ is 2. I	Hence, it is quadrati	IC.				

- (*ii*) The highest degree of x in $x x^3$ is 3. Hence, it is a cubic.
- (*iii*) The highest degree of y in $y + y^2 + 4$ is 2. Hence, it is quadratic.
- (*iv*) The highest degree of x in 1 + x is 1. Hence, it is a linear polynomial.
- (v) The highest degree of t in 3t is 1. Hence, it is a linear polynomial.
- (vi) The highest degree of r in r^2 is 2. Hence, it is a quadratic polynomial.
- (vii) The highest degree of x in $7x^3$ is 3. Hence, it is cubic polynomial.

EXERCISE 2.2

Ans.

QUESTION 1.	Find the value of the polynomial $5x - 4x^2 + 3$ at						
	(i) J	x = 0	(<i>ii</i>) $x = -1$	(iii) x = 2			
SOLUTION.	Let		$p(x) = 5x - 4x^2 + 3$ be given polynomial.				
	(<i>i</i>)	At $x = 0$; the value of	p(x) is,				
			$p(0) = 5(0) - 4(0)^2 + 3 = 0 - 0 + 3 = 3$				
	<i>(ii)</i>	At $x = -1$; the value of	f p(x) is,				
			$p(-1) = 5(-1) - 4(-1)^2 + 3 = -5 - 4 + 3 = -5$	- 6			
	<i>(iii)</i>	At $x = 2$; the value of	p(x) is,				
			$p(2) = 5(2) - 4(2)^2 + 3 = 10 - 16 + 3 = 13$	3 - 16 = -3.	Ans.		
QUESTION 2.	Fin	d p (0), p (1) and p (2)	for each of the following polynomials:				
	(i)	$p(y) = y^2 - y + 1$	(<i>ii</i>) $p(t) = 2 + t + 2t^2 - t^3$	1			
	<i>(iii)</i>	$p(x) = x^3$	(iv) p(x) = (x-1)(x+1))			
SOLUTION.	(<i>i</i>)	We have,	$p(y) = y^2 - y + 1$		(1)		
		Putting $y = 0$ in (1), w	e get				
			$p(0) = (0)^2 - 0 + 1 = 0 - 0 + 1 = 1,$				
		Putting $y = 1$ in (1), w	e get				
			$p(1) = (1)^2 - 1 + 1 = 1 - 1 + 1 = 1,$				
		Putting $y = 2$ in (1), we get					
			$p(2) = (2)^2 - 2 + 1 = 4 - 2 + 1 = 3$				
	(ii)	We have	$p(t) = 2 + t + 2t^2 - t^3$		(2)		
		Putting $t = 0$ in (2), we	e get				
			$p(0) = 2 + 0 + 2(0)^2 - (0)^3 = 2 + 0 + 0 + 0$	-0 = 2			
		Putting $t = 1$ in (2), we	e get				
			$p(1) = 2 + 1 + 2(1)^2 - (1)^3 = 2 + 1 + 2 - 1$	= 5 - 1 = 4			
		Putting $t = 2$ in (2), we	e get				
			$p(2) = 2 + 2 + 2(2)^2 - (2)^3 = 2 + 2 + 8 - 8$	= 4	Ans.		
	<i>(iii)</i>	We have,	$p(x) = x^3$		(3)		
		Putting $x = 0$ in (3), w	e get				
			$p(0) = (0)^3 = 0$				
		Putting $x = 1$ in (3), w	e gt				
			$p(1) = (1)^3 = 1$				
		Putting $x = 2$ in (3), w	e get				
			$p(2) = (2)^3 = 8$				
	(iv)	We have	p(x) = (x-1)(x+1)		(4)		
		Putting $x = 0$ in (4), w	e get				
			p(0) = (0-1)(0+1) = (-1)(1) = -1				
		Putting $x = 1$ in (4), w	e get				

p(1) = (1-1)(1+1) = (0)(2) = 0Putting x = 2 in (4), we get p(2) = (2-1)(2+1) = (1)(3) = 3Ans. QUESTION 3. Verify whether the following are zeroes of the polynomial, indicated against them, (i) $p(x) = 3x + 1; x = -\frac{1}{3}$ (*ii*) $p(x) = 5x - 4; x = \frac{4}{5}$ (*iii*) $p(x) = x^2 - 1$; x = 1, -1(*iv*) p(x) = (x + 1) (x - 2); x = -1, 2(vi) $p(x) = lx + m; x = -\frac{m}{l}$ (v) $p(x) = x^2; x = \theta$ (vii) $p(x) = 3x^2 - 1; x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$ (viii) $p(x) = 2x + 1; x = \frac{1}{2}$ p(x) = 3x + 1**SOLUTION.** (i) We have, ...(1) Putting $x = -\frac{1}{3}$ in (1), we get $p\left(-\frac{1}{3}\right) = 3\left(-\frac{1}{3}\right) + 1 = -1 + 1 = \mathbf{0}$ Hence, $-\frac{1}{3}$ is a zero of p(x)Ans. p(x) = 5x - 4(ii) We have, ...(2) Putting $x = \frac{4}{5}$ in (2), we get $p\left(\frac{4}{5}\right) = 5\left(\frac{4}{5}\right) - 4 = 4 - 4 = \mathbf{0}$ Hence, $\frac{4}{5}$ is a zero of p(x). Ans. $p(x) = x^2 - 1$ (iii) We have, ...(3) Putting x = 1, in (3), we get $p(1) = (1)^2 - 1 = 1 - 1 = 0$ Hence, 1 is a zero of p(x). Also putting x = -1 in (3), we get $p(-1) = (-1)^2 - 1 = 1 - 1 = \mathbf{0}$ Hence, -1 is a zero of p(x). Ans. p(x) = (x+1)(x-2)(*iv*) We have, ...(4) Putting x = -1, in (4), we get p(-1) = (-1 + 1)(-1 - 2) = (0)(-3) = 0Hence, -1 is a zero of p(x). Also putting x = 2, in (4), we get p(2) = (2+1)(2-2) = (3)(0) = 0Hence, 2 is zero of p(x). Ans. $p(x) = x^2$ (v) We have, ...(5) Putting x = 0, in (5), we get $p(0) = (0)^2 = 0$ Hence, 0 is a zero of p(x). Ans. (vi) We have, p(x) = lx + m...(6) Putting $x = -\frac{m}{l}$ in (6), we get $p\left(-\frac{m}{l}\right) = l\left(\frac{-m}{l}\right) + m = -m + m = \mathbf{0}$ Hence, $\frac{-m}{l}$ is a zero of p(x). Ans.

(vii) We have,
$$p(x) = 3x^2 - 1$$
(7)
Putting $x = -\frac{1}{\sqrt{3}}$ in (7), we get
 $p\left(-\frac{1}{\sqrt{3}}\right) = 3\left(-\frac{1}{\sqrt{3}}\right)^2 - 1 = 3 \times \frac{1}{3} - 1 = 1 - 1 = 0$
Hence, $-\frac{1}{\sqrt{3}}$ is a zero of $p(x)$.
Also putting $x = \frac{2}{\sqrt{3}}$ in (7), we get
 $p\left(\frac{2}{\sqrt{3}}\right) = 3\left(\frac{2}{\sqrt{3}}\right)^2 - 1 - 3 \times \frac{4}{3} - 1 = 4 - 1 = 3 \neq 0$
Hence, $\frac{2}{\sqrt{3}}$ is not a zero of $p(x)$.
(viii) We have, $p(x) = 2x + 1$ (8)
Putting $x = \frac{1}{2}$ in (8), we get
 $p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \neq 0$
Hence, $\frac{1}{2}$ is not a zero of $p(x)$.
OUESTION 4. Find the zero of the polynomial in each of the following cases :
(i) $p(x) = x + 5$ (ii) $p(x) = x - 5$
(ii) $p(x) = x + 4$, $c \neq 0$, c, d are real numbers.
SOLUTION () We have to solve $p(x) = 0$
or $x - 5 = 0 \implies x = -5$
 $\therefore -5$ is a zero of the polynomial $x + 5$.
(iii) We have to solve $p(x) = 0$
or $2x + 5 = 0 \implies x = -5$
 $\therefore -5$ is a zero of the polynomial $x + 5$.
(iv) We have to solve $p(x) = 0$
or $2x + 5 = 0 \implies x = -5$
 $\therefore -5$ is a zero of the polynomial $x + 5$.
(iv) We have to solve $p(x) = 0$
or $2x + 5 = 0 \implies x = -5$
 $\therefore -5$ is a zero of the polynomial $x + 5$.
(iv) We have to solve $p(x) = 0$
or $3x - 2 = 0 \implies x = -5$
 $\therefore -\frac{5}{2}$ is a zero of the polynomial $3x - 2$.
(v) We have to solve $p(x) = 0$
or $3x - 2 = 0 \implies x = -\frac{5}{2}$
 $\therefore -\frac{2}{3}$ is a zero of the polynomial $3x - 2$.
(v) We have to solve $p(x) = 0$
or $3x = 0 \implies x = 0$
 $\therefore 0$ is a zero of the polynomial $3x$.
(vi) We have to solve $p(x) = 0$
or $x = -\frac{1}{2}$
(vii) We have to solve $p(x) = 0$
or $x = 0 \implies x = 0$
 $\therefore 0$ is a zero of the polynomial $3x$.
(viii) We have to solve $p(x) = 0$, $c \neq 0$
or $cx + d = 0 \implies x = -\frac{d}{c}$
 $\therefore -\frac{d}{c}$ is a zero of the polynomial $2x + d$.
Ans.

QUESTION 1.	Find the rem	ainder when $x^3 + 3x^2$	+3x+1 is divided by	by				
	(<i>i</i>) $x + 1$	(<i>ii</i>) $x - \frac{1}{2}$	(<i>iii</i>) <i>x</i>	$(iv) x + \pi$	(v) 5 -	+ 2x		
SOLUTION.	(i) By remain	nder theorem, the requi	ired remainder is eq	ual to <i>p</i> (- 1).				
	Now,	p(x) = x	$x^3 + 3x^2 + 3x + 1$					
	$\therefore \qquad p(-1) = (-1)^3 + 3(-1)^2 + 3(-1) + 1 = -1 + 3 - 3 + 1 = 0$							
	Hence, required remainder = $p(-1) = 0$.							
	(ii) By remain	(<i>ii</i>) By remainder theorem, the required remainder is equal to $p\left(\frac{1}{2}\right)$.						
	Now,	p(x) = x	$x^3 + 3x^2 + 3x + 1$					
	<i>.</i> :.	$p\left(\frac{1}{2}\right) = \left($	$\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^2 + 3\left(\frac{1}{2}\right)^2$) + 1				
		$=\frac{1}{8}$	$\frac{1}{3} + \frac{3}{4} + \frac{3}{2} + 1 = \frac{1+6+3}{2}$	$\frac{12+8}{8} = \frac{27}{8}$				
	(<i>iii</i>) By remain	nder theorem, the requi	ired remainder is eq	ual to $p(0)$.				
	Now, ·	p(x) = x $p(0) = 0$	$3^{3} + 3x^{2} + 3x + 1$ x + 0 + 0 + 1 - 1					
	 Hence, th	e required remainder =	p(0) = 1.					
	(<i>iv</i>) By remain	nder theorem, the requi	ired remainder is $p(-$	- π).				
	Now,	p(x) = x	$x^3 + 3x^2 + 3x + 1$					
	∴ R	Remainder = $p(-\pi) = (-\pi)$	$-\pi)^3 + 3(-\pi)^2 + 3(-\pi)^2 + 3(-\pi)^3 + 3\pi^2 - 3\pi + 1$	$(-\pi) + 1$				
	(v) By remainder theorem, the required remainder is $p\left(-\frac{5}{2}\right)$.							
	Now,	p(x) = x	$x^3 + 3x^2 + 3x + 1$	(2)				
	<i>.</i> .	$p\left(-\frac{5}{2}\right) = \left($	$\left(-\frac{5}{2}\right)^3 + 3\left(\frac{-5}{2}\right)^2 + 3$	$\left(\frac{-5}{2}\right) + 1$				
			125 + 75 - 15 + 1 =	-125 + 150 - 60 + 8	$=\frac{-27}{}$	A mg		
			$-\frac{1}{8}+\frac{1}{4}-\frac{1}{2}+1=$	8	8	Ans.		
QUESTION 2.	Find the rem	ainder when $x^3 - ax^2$	+ 6x - a is divided b	y x - a.		(1)		
SOLUTION.	Let By remainder	p(x) = x theorem when $p(x)$ is	$a^3 - ax^2 + 6x - a$ divided by $x - a$ Tl	hen remainder = $n(a)$		(1)		
	Putting $x = a$	in (1), we get		p(u)				
	 	p(a) = a $= a$	$a^{3} - a \cdot a^{2} + 6a - a$ $a^{3} - a^{3} + 6a - a = 5a$!				
	Hence, the rea	quired remainder is p(a	a)=5a.			Ans.		
QUESTION 3.	Check wheth	er 7 + 3x is a factor of	$73x^3+7x$.					
SOLUTION.	Let	p(x) = 3	$x^3 + 7x$			(1)		
	Now,	7 + 3x = 0	$\Rightarrow x = -\frac{7}{3}$					
	7 + 3x will be a factor of $p(x) = 3x^3 + 7x$ if $p\left(-\frac{7}{3}\right) = 0$							
	Putting $x = -\frac{1}{2}$	$\frac{7}{3}$ in (1), we get						
		$p\left(-\frac{7}{3}\right) = 3$	$9\left(-\frac{7}{3}\right)^3 + 7\left(-\frac{7}{3}\right)$					

$$= 3\left(\frac{-343}{27}\right) - \frac{49}{3} = -\frac{343}{9} - \frac{49}{3} = -\frac{490}{9} \neq 0$$

Hence, 7 + 3x is not a factor of $3x^3 + 7x$.

EXERCISE 2.4
QUESTION 1. Determine which of the following polynomials has
$$(x + 1)$$
 as a factor :
(i) $x^3 + x^2 + x + 1$
(ii) $x^4 + x^3 + x^2 + x + 1$
(iii) $x^4 + x^3 + x^2 + x + 1$
(iii) $x^4 + x^3 + 3x^2 + x + 1$
(iii) $x^4 + 3x^3 + 3x^2 + x + 1$
(iv) $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$
SOLUTION. (i) Let $f(x) = x^3 + x^2 + x + 1$
...(1)
By factor theorem, $(x + 1)$ will be a factor of $f(x)$, if $f(-1) = 0$
On putting $x = -1$ in (1), we get
 $f(-1) = (-1)^2 + (-1)^2 + (-1) + 1 = -1 + 1 - 1 + 1 = 0$
Hence, $x + 1$ is a factor of $x^3 + x^3 + x^2 + x + 1$
...(1)
In order to prove that $(x + 1)$ is a factor of (1).
 $x + 1 = 0 \Rightarrow x = -1$. Then it is sufficient to show that $p(-1) = 0$.
Putting $x = -1$ in (1), we get
 $p(-1) = (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1$
 $= 1 - 1 + 1 - 1 + 1 = 1 = x 0$
Hence, $(x + 1)$ is not a factor of $x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iii) Let $p(x) = x^4 + x^3 + x^2 + x + 1$. Ans.
(iv) Let $p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$...(3)
In order to prove that $(x + 1)$ is a factor of (3).
 $x + 1 = 0 \Rightarrow x = -1$. Then it is sufficient to show that $p(-1) = 0$.
Putting $x = -1$ in (3), we get
 $p(-1) = (-1)^2 - (-1)^2 - (2 + \sqrt{2})(x + \sqrt{2})$. Ans.
OUESTION 2. Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:
() $p(x) = x^3 + x^2 + x + 1, g(x) = x + 2$
(ii) $p(x) = x^3 + x^2 + x + 5, g(x) = x - 2$
(ii) $p(x) = x^3 + x^2 + x + 6, g(x) = x - 4$
(iii) $p(x) = x^3 + x^2 + x + 6, g(x) = x - 4$
(iii) $p(x) = x^3 + x^2 + x + 6, g(x) = x - 4$
(iii) $p(x) = x^3 + x^2 + x + 6, g(x) = x - 4$

$$x + 1 = 0 \implies x = -1$$

then it is sufficient to show that p(-1) = 0

Ans.

	Putting $x = -1$ in (1), we get	
	$p(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1$	
	= -2 + 1 + 2 - 1 = 0	
	Hence, $g(x)$ is a factor of $p(x)$.	Ans.
<i>(ii)</i>	We have, $p(x) = x^3 + 3x^2 + 3x + 1$	(2)
	In order to prove that $g(x) = x + 2$ is a factor of (2).	
	$x + 2 = 0 \implies x = -2$ then it is sufficient to show that $p(-2) = 0$	
	Putting $x = -2$ in (2), we get	
	$p(-2) = (-2)^3 + 3(-2)^2 + 3(-2) + 1$	
	$= -8 + 12 - 6 + 1 = -1 \neq 0$	
	Hence, $g(x)$ is not a factor of $p(x)$.	Ans.
(iii)	We have, $p(x) = x^3 - 4x^2 + x - 6$	(3)
	In order to prove that $g(x) = x - 3$ is a factor of (3).	
	$x-3=0 \implies x=3$ then it is sufficient to show that $p(3)=0$.	
	Putting $x = 3$ in (3), we get	
	$p(3) = (3)^3 - 4(3)^2 + 3 - 6$	
	$= 27 - 36 + 3 - 6 = -12 \neq 0$	
	Hence, $g(x)$ is not a factor of $p(x)$.	Ans.
QUESTION 3. Fin	and the value of k, if $x - 1$ is a factor of $p(x)$ in each of the following cases:	
(i)	$p(x) = x^2 + x + k$ (ii) $p(x) = 2x^2 + kx + \sqrt{2}$	
(iii)	$p(x) = kx^2 - \sqrt{2}x + 1$ (iv) $p(x) = kx^2 - 3x + k$.	
SOLUTION. (i)	We have, $p(x) = x^2 + x + k$	
	If $(x-1)$ is a factor of $p(x) = x^2 + x + k$, then	
	p(1) = 0	
	$\Rightarrow \qquad (1)^2 + 1 + k = 0$	
	\Rightarrow 1+1+k=0	
	$\Rightarrow \qquad k = -2$	Ang
	Hence, $R = -2$	Alls.
(ii)	We have, $p(x) = 2x^2 + kx + \sqrt{2}$	
	If $(x-1)$ is a factor of $p(x) = 2x^2 + kx + \sqrt{2}$, then	
	p(1) = 0	
	$\Rightarrow \qquad 2(1)^2 + k(1) + \sqrt{2} = 0 \Rightarrow 2 + k + \sqrt{2} = 0$	
	$\Rightarrow \qquad \qquad k = -(2 + \sqrt{2})$	
	Hence, $k = -(2 + \sqrt{2})$	Ans.
(<i>iii</i>)	We have, $p(x) = kx^2 - \sqrt{2}x + 1$	
	If $(x-1)$ is a factor of $p(x) = kx^2 - \sqrt{2}x + 1$, then	
	p(1) = 0	
	$\Rightarrow \qquad k(1)^2 - \sqrt{2}(1) + 1 = 0 \qquad \Rightarrow \qquad k - \sqrt{2} + 1 = 0$	
	Hence, $k = \sqrt{2} - 1$	Ans.
<i>(iv)</i>	We have, $p(x) = kx^2 - 3x + k$	
	If $(x - 1)$ is a factor of $p(x) = kx^2 - 3x + k$, then	
	p(1) = 0	
	$\Rightarrow \qquad k(1)^2 - 3(1) + k = 0 \qquad \Rightarrow \qquad k - 3 + k = 0$	

_	`
	$ \rightarrow $
	-

Hence,

$$2k = 3 \implies k = \frac{3}{2}$$

$$k = \frac{3}{2}$$

$$2x^{2} + 7x + 3 \qquad (iii) \ 6x^{2} + 5x - 6$$

Ans.

QUESTION 4. *Factorize* :

(iv) $3x^2 - x - 4$ (i) $12x^2 - 7x + 1$ *(ii)* **SOLUTION.** (*i*) $12x^2 - 7x + 1$ Here a = 12, b = -7, c = 1[*Standard form* = $ax^2 + bx + c$] (a) To factorise the given quadratic we have to find p and q such that p + q = bpq = ac $pq = 12 \times 1 = 12$ p + q = -7i.e., (b) We have to find out two factors of 12 such that their sum = -7By trial -4 - 3 = -7, $(-4) \times (-3) = 12$ (c) Split the middle term -7x = -4x - 3x(*d*) Factorise by grouping $12x^2 - 7x + 1 = 12x^2 - 4x - 3x + 1$ = 4x (3x-1) - 1(3x-1) = (3x-1) (4x-1)Ans. (*ii*) We have, $2x^2 + 7x + 3$ Here a = 2, b = 7, c = 3[*Standard form* = $ax^2 + bx + c$] (a) To factorize the given quadratic we have to find p and q such that p + q = bpq = acp + q = 7 *i.e.*, $pq = 2 \times 3 = 6$ i.e., (b) We have to find out two factors of 6 such that their sum is 7. By trial 1 + 6 = 7, $1 \times 6 = 6$ (c) Split the middle term 7x = x + 6x, $6 = 1 \times 6$ (*d*) Factorise by grouping $2x^2 + 7x + 3 = 2x^2 + x + 6x + 3$ = x (2x + 1) + 3 (2x + 1) = (2x + 1) (x + 3)Ans. (*iii*) We have, $6x^2 + 5x - 6$ [*Standard form* = $ax^2 + bx + c$] Here, a = 6, b = 5, c = -6(a) To factorise the given quadratic we have to find p and q such that $pq = ac \implies pq = 6(-6) = -36$ p + q = b \Rightarrow p + q = 5(b) We have to find out two factors of -36 such that their difference is 5. By trial, 9 + (-4) = 9 - 4 = 5, $9 \times (-4) = -36$ (c) Split the middle term $5x = 9x - 4x - 36 = 9 \times (-4)$ (d) Factorise by grouping $6x^{2} + 5x - 6 = 6x^{2} + 9x - 4x - 6 = 3x(2x + 3) - 2(2x + 3)$ = (2x+3)(3x-2)Ans. (*iv*) We have, $3x^2 - x - 4$ Here, a = 3, b = -1, c = -4[*Standard form* = $ax^2 + bx + c$] (a) To factorise the given quadratic we have to find p and q such that p+q=b pq=ac $p + q = -1 \implies pq = (3)(-4) = -12$ i.e., (b) We have to find out two factors of -12 such that their sum is -1. By trial 3 + (-4) = -1, $3 \times (-4) = -12$ (c) Split the middle term

Thus,
$$x^3 - 3x^2 - 9x - 5 = (x + 1)(x^2 - 4x - 5) = (x + 1)(x^2 + x - 5x - 5)$$

 $= (x + 1)[x(x + 1) - 5(x + 1)] = (x + 1)(x + 1)(x - 5)$
Hence, $x^3 - 3x^2 - 9x - 5 = (x + 1)(x + 1)(x - 5)$
Let $p(x) = x^3 + 13x^2 + 32x + 20$...(1)

(iii) Let

The constant term in p(x) is 20 and its factors are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20 . On putting x = -2 in (1), we get

$$p(-2) = -8 + 52 - 64 + 20 = 0$$

(x+2) is a factor of p(x).

Now, divide p(x) by x + 2 to get other factors :

$$\begin{array}{r} x^{2} + 11x + 10 \\ x + 2 \overline{\smash{\big)}x^{3} + 13x^{2} + 32x + 20} \\ x^{3} + 2x^{2} \\ -- \\ \hline 11x^{2} + 32x \\ 11x^{2} + 22x \\ \hline -- \\ \hline 10x + 20 \\ \hline 10x + 20 \\ \hline -- \\ 0 \end{array}$$

Thus,

(iv) Let

$$x^{3} + 13x^{2} + 32x + 20 = (x + 2) (x^{2} + 11x + 10) = (x + 2) (x^{2} + x + 10x + 10)$$

= (x + 2) [x(x + 1) + 10(x + 1)] = (x + 2) (x + 1) (x + 10) Ans.
p (y) = 2y^{3} + y^{2} - 2y - 1 ...(1)

The constant term in p(y) is 1 and its factors are ± 1 .

On putting y = 1 in (1), we get

$$(1) = 2 + 1 - 2 - 1 = 0.$$

So, (y-1) is a factor of p(y).

Now, we divide p(y) by (y - 1) to get other factors.

р

$$\frac{2y^{2} + 3y + 1}{y - 1} \frac{2y^{3} + y^{2} - 2y - 1}{2y^{3} - 2y^{2}} \frac{- +}{3y^{2} - 2y} \frac{- +}{3y^{2} - 2y} \frac{3y^{2} - 3y}{- + \frac{y - 1}{0}}$$

Thus,

$$2y^{3} + y^{2} - 2y - 1 = (y - 1) (2y^{2} + 3y + 1) = (y - 1) (2y^{2} + 2y + y + 1)$$

= (y - 1) [2y (y + 1) + 1(y + 1)] = (y - 1) (y + 1)(2y + 1) Ans.

EXERCISE 2.5

QUESTION 1.	Use suitable id	entities to find t	the following products :			
	(<i>i</i>) $(x + 4) (x + 4)$	- 10)	(<i>ii</i>) $(x + 8) (x - 1)$	(0)	(iii) $(3x+4)(3x-5)$)
	$(iv)\left(y^2+\frac{3}{2}\right)\left($	$y^2 - \frac{3}{2}$	(v) $(3-2x)(3+$	2x)		
SOLUTION.	(<i>i</i>)	(x+4)(x+1)	$0) = x^{2} + (4 + 10)x + 4x$ $= x^{2} + 14x + 40$	× 10		
	(ii)	(x+8)(x-1)	$0) = x^{2} + (8 - 10)x + 8 = x^{2} - 2x - 80$	× (– 10)		
((iii)	(3x+4)(3x-	$5) = (3x)^{2} + (4-5)3x + [Using (x + a) (x + a)]$	$4 \times (-5) = 9x^2 - b^2 + b^2 = x^2 + (a + b) $	-3x - 20 b)x + ab. Here, x is a	taken as 3x]
((iv)	$\left(y^2 + \frac{3}{2}\right)\left(y^2 - \frac{3}{2}\right)$	$\left(\frac{3}{2}\right) = (y^2)^2 - \left(\frac{3}{2}\right)^2 = y^4 - y^4$	$-\frac{9}{4}$		
	(v)	(3-2x)(3+2)	$(2x) = (3)^2 - (2x)^2 = 9 - 4$	x^2		Ans.
QUESTION 2.	Evaluate the j	following produ	ects without multiplying	directly:		
	(i) 103 × 107		(ii) 95 × 96	(1	i ii) 104 × 96	
SOLUTION.	(<i>i</i>)	103×10	$07 = (100 + 3) \times (100 +$	7)		
			$= 100^2 + (3+7) \times 10^{10}$	$00 + 3 \times 7$		
			= 10000 + 1000 + 21	= 11021		Ans.
	<i>(ii)</i>	95×10^{-10}	$96 = (100 - 5) \times (100 - 5)$	4)		
			$=(100)^2 - (4+5)100$	$)+5\times4$		
			= 10000 - 900 + 20 =	= 9120		Ans.
	(iii)	104×100	$96 = (100 + 4) \times (100 - 4) \times$	4)		
			$=(100)^2 - (4)^2 = 100$	00 - 16 = 9984		Ans.
QUESTION 3.	Factorise the	following using	g appropriate identities .	:		
	(i) $9x^2 + 6xy$	$+y^{2}$	(ii) $4y^2 - 4y + 1$	(1	(iii) $x^2 - \frac{y^2}{100}$	
SOLUTION.	<i>(i)</i>	$9x^2 + 6xy +$	$y^2 = (3x)^2 + 2(3x)(y) + 0$	$(y)^2$		
			$=(3x+y)^2=(3x+y)^2$	(3x + y)		
	<i>(ii)</i>	$4v^2 - 4v +$	$-1 = (2v)^2 - 2(2v)(1) + (1)^2$	$(1)^2$		
		5 5	$= (2v - 1)^2 = (2v - 1)^2$	(2v - 1)		
	(iii)	$x^2 - \frac{y}{10}$	$\frac{y^2}{y^2} = (x)^2 - \left(\frac{y}{10}\right)^2 = \left(x - \frac{y}{10}\right)^2$	$\left(\frac{y}{10}\right)\left(x+\frac{y}{10}\right)$		Ans.
	E					
QUESTION 4.	Expana each	oj tne jouowing 1->2	g , using suitable identities $(\frac{1}{2})^2$	es :	$(2 + 1)^2$	
	(<i>i</i>) $(x + 2y + 4)$	4z) ⁻	$(11) (2x - y + z)^2$	(111)	$(-2x + 3y + 2z)^{-2}$	
	(iv) (3a-7b-	$(c)^2$	(v) $(-2x+5y-3z)^2$	(vi)	$\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2$	
SOLUTION.	(<i>i</i>) We have,	(x+2y+4z)	$(z)^2 = x^2 + (2y)^2 + (4z)^2 + (4z)^2$	-2(x)(2y) + 2(2y)	(4z) + 2(4z)(x)	
				$[(a + b + c)^2 =$	$a^2 + b^2 + c^2 + 2ab + c^2$	-2bc+2ca]
			$=x^2+4y^2+16z^2+4$	xy + 16yz + 8zx		
	(<i>ii</i>) We have.	(2x - v + z)	$z^{2} = [2x + (-v) + z]^{2}$	$[\because (a+b+c)^2$	$=a^{2}+b^{2}+c^{2}+2ab$	+ 2bc + 2ca

$$= (2x)^{2} + (-y)^{2} + z^{2} + 2(2x)(-y) + 2(-y)(z) + 2(z)(2x)$$

$$= 4x^{2} + y^{2} + z^{2} - 4xy - 2yz + 4zx$$

(iii) We have, $(-2x + 3y + 2z)^{2} = [(-2x) + 3y + 2z]^{2}$ $[(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca]$

$$= (-2x)^{2} + (3y)^{2} + (2z)^{2} + 2(-2x)(3y) + 2(3y)(2z) + 3(2z)(-2x)$$

$$= 4x^{2} + 9y^{2} + 4z^{2} - 12xy + 12yz - 8zx$$

(iv) We have, $(3a - 7b - c)^{2} = [3a + (-7b) + (-c)]^{2} [\because (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca]$

$$= (3a)^{2} + (-7b)^{2} + (-c)^{2} + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)$$

(v) We have,
$$(-2x + 5y - 3z)^2 = [(-2x) + 5y + (-3z)]^2 [(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca]$$

= $(-2x)^2 + (5y)^2 + (-3z)^2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)$
= $4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx$

 $= 9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca$

(vi) We have,
$$\left[\frac{1}{4}a - \frac{1}{2}b + 1\right]^2 = \left[\frac{1}{4}a + \left(-\frac{1}{2}b\right) + 1\right]^2 \left[(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca\right]$$
$$= \left(\frac{1}{4}a\right)^2 + \left(-\frac{1}{2}b\right)^2 + (1)^2 + 2\left(\frac{1}{4}a\right)\left(-\frac{1}{2}b\right) + 2\left(-\frac{1}{2}b\right)(1) + 2(1)\left(\frac{1}{4}a\right)$$
$$= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{1}{4}ab - b + \frac{1}{2}a$$
Ans.

QUESTION 5. Factorise :

(i)
$$4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$$
 (ii) $2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$

SOLUTION. (i) We have, $4x^2 + 9y^2 + 16z^2 + 12xy - 24yz - 16xz$ $= (2x)^2 + (3y)^2 + (-4z)^2 + 2(2x)(3y) + 2(3y)(-4z) + 2(2x)(-4z)$ $[a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = (a + b + c)^2]$ $= [2x + 3y + (-4z)]^2 = (2x + 3y - 4z)^2$

(ii) We have,
$$2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz$$

$$= (\sqrt{2}x)^2 + (-y)^2 + (-2\sqrt{2}z)^2 + 2(\sqrt{2}x)(-y) + 2(-y)(-2\sqrt{2}z) + 2(\sqrt{2}x)(-2\sqrt{2}z)$$

$$= [\sqrt{2}x + (-y) + (-2\sqrt{2}z)]^2 = (\sqrt{2}x - y - 2\sqrt{2}z)^2$$
Ans.

QUESTION 6. Write the following cubes in expanded form :

(i)
$$(2x + 1)^3$$
 (ii) $(2a - 3b)^3$ (iii) $\left[\frac{3}{2}x + 1\right]^3$ (iv) $\left[x - \frac{2}{3}y\right]^3$
SOLUTION. (i) We have, $(2x + 1)^3 = (2x)^3 + 3(2x)^2(1) + 3(2x)(1)^2 + (1)^3$ $[(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3]$
 $= 8x^3 + 12x^2 + 6x + 1$
(ii) We have, $(2a - 3b)^3 = (2a)^3 + 3(2a)^2(-3b) + 3(2a)(-3b)^2 + (-3b)^3$
 $= 8a^3 - 36a^2b + 54ab^2 - 27b^3$
(iii) We have, $\left[\frac{3}{2}x + 1\right]^3 = \left(\frac{3}{2}x\right)^3 + 3\left(\frac{3}{2}x\right)^2(1) + 3\left(\frac{3}{2}x\right)(1)^2 + 1^3$
 $= \frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1$

(iv) We have,
$$\left[x - \frac{2}{3}y\right]^3 = x^3 + 3(x)^2 \left(-\frac{2}{3}y\right)^3 + 3(x)\left(-\frac{2}{3}y\right)^3 + \left(-\frac{2}{3}y\right)^3$$

 $= x^3 - 2x^3y + \frac{4}{3}xy^2 - \frac{8}{27}y^3$ Ans.
QUESTION 7. Evaluate the following using suitable identifies:
(i) (99)^3 = (100)^{-1} (102)^3 (ii) (102)^4 (iii) (998)^3
SOLUTION. (i) (99)^3 = (100 - 1)^3 = (1000, 000 - 1) - (1)^3 [(a - b)^3 = a^3 - 3ab(a - b) - b^3] = 1000, 000 - 300 × 99 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 29700 - 1 = 1000, 000 - 0100 + 01200 + 12008 = 1061208 Ans.
(iii) (102)^3 = (1000 - 2)^3 = (1000 - 2) - (2)^3 = (1000 - 0)^3 = (1000 - 0)^3 = 000 × 02(1000 - 2) - (2)^3 = 1, 000, 000, 000 - 6000 × 98 - 8 = -1, 00, 000, 0000 - 6000 × 98 - 8 = -1, 00, 000, 000 - 6000 × 98 - 8 = -1, 00, 000, 000 - 6000 × 98 - 8 = -1, 00, 000, 000 - 5988000 - 8 = -1, 00, 000, 000 - 5988008 = -994011992 Ans.
QUESTION 8. Factorise each of the following :
(i) $8a^4 + b^4 + 12a^4 b + 6ab^2$ (ii) $8a^4 - b^4 - 12a^2b + 6ab^2$
(iii) $27 - 125a^1 - 135a + 225a^2$ (iv) $64a^3 - 27b^3 - 144a^3b + 108ab^2$
(v) $27p^4 - \frac{1}{216} - \frac{2}{2}p^2 + \frac{1}{4}p$
SOLUTION. (i) We have, $8a^3 + b^3 + 12a^2b + 6ab^2 = (2a)^3 + (b)^3 + 3(2a)(b)(2a + b)$
(ii) We have, $27 - 125a^3 - 135a + 225a^2$ (i) $(64a^3 - 27b^3 - 144a^3b + 108ab^2)$
(iii) We have, $27 - 125a^3 - 135a + 225a^2$ (i) $(4a - 3b)(2a - b)(2a - b)$
(iii) We have, $27 - 125a^3 - 135a + 225a^2$ (i) $(-5a)^3 + 3(3) - 5a)(3 - 5a)$

(ii)
R.H.S. =
$$(x - y) (x^2 + xy + y^2)$$

= $x (x^2 + xy + y^2) - y (x^2 + xy + y^2)$
= $x^3 + x^2y + xy^2 - x^2y - xy^2 - y^3$
= $x^3 - y^3 = L.H.S.$ Proved.

QUESTION 10. Factorise each of the following : (i) $27y^3 + 125z^3$ (ii) $64m^3 - 343n^3$ SOLUTION. (i) We have, $27y^3 + 125z^3 = (3y)^3 + (5z)^3$ $[a^3 + b^3 = (a + b)(a^2 - ab + b^2)]$ $= (3y + 5z) [(3y)^2 - (3y) (5z) + (5z)^2]$ $= (3y + 5z) (9y^2 - 15yz + 25z^2)$ (ii) We have, $64m^3 - 343n^3 = (4m)^3 + (-7n)^3$ $[a^3 + b^3 = (a + b) (a^2 - ab + b^2)]$ $= (4m - 7n) [(4m)^2 - (4m) (-7n) + (-7n)^2]$ $= (4m - 7n) (16m^2 + 28mn + 49n^2)$ Ans.

QUESTION 11. Factorise : $27x^3 + y^3 + z^3 - 9xyz$ SOLUTION. $27x^3 + y^3 + z^3 - 9xyz = (3x)^3 + y^3 + z^3 - 3 (3x) (y)(z)$ $= (3x + y + z) [(3x)^2 + y^2 + z^2 - (3x)y - yz - z(3x)]$ $= (3x + y + z) (9x^2 + y^2 + z^2 - 3xy - yz - 3zx)$ Ans.

QUESTION 12. Verify that
$$x^3 + y^3 + z^3 - 3xyz = \frac{1}{2} (x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]$$

SOLUTION.
L.H.S. $= \frac{1}{2} (x + y + z) [(x - y)^2 + (y - z)^2 + (z - x)^2]$
 $= \frac{1}{2} (x + y + z) (x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2)$
 $= (x + y + z) (x^2 + y^2 + z^2 - yz - zx - xy)$
 $= x^3 + y^3 + z^3 - 3xyz$
 $= R.H.S.$ Verified.

QUESTION 13. *If* x + y + z = 0, *show that* $x^3 + y^3 + z^3 = 3xyz$.

SOLUTION. We have,

$$x + y + z = 0$$

$$\Rightarrow \qquad x + y = -z \qquad ...(1)$$
Cubing both sides of (1), we have
$$(x + y)^3 = (-z)^3$$

$$\Rightarrow \qquad x^3 + y^3 + 3xy(x + y) = -z^3$$

$$\Rightarrow \qquad x^3 + y^3 + 3xy(-z) = -z^3$$

$$\Rightarrow \qquad x^3 + y^3 + 3xy(-z) = -z^3$$

$$\Rightarrow \qquad x^3 + y^3 + 3xy(-z) = -z^3$$

$$\Rightarrow \qquad Proved.$$

 $\Rightarrow x^3 + y^3 + z^3 = 3xyz$ QUESTION 14. Without actually calculating the cubes, find the values of each of the following: (i) $(-12)^3 + (7)^3 + (5)^3$ (ii) $(22)^3 + (-15)^3 + (-12)^3$

(i)
$$(-12)^3 + (7)^3 + (5)^3$$
 (ii) $(28)^3 + (-15)^3 + (-13)^3$
SOLUTION. (i) Using the formula $a^3 + b^3 + c^3 = 3$ abc, if $a + b + c = 0$.
Here $a = -12$, $b = 7$ and $c = 5$
 $\Rightarrow \qquad a + b + c = -12 + 7 + 5 = 0$
 $\Rightarrow \qquad (-12)^3 + (7)^3 + (5)^3 = 3 \ (-12)(7)(5) = -1260$
(ii) Here, $a = 28$, $b = -15$, and $c = -13$

$$\Rightarrow \qquad a+b+c=28-15-13=0$$

 $\Rightarrow (28)^3 + (-15)^3 + (-13)^3 = 3(28)(-15)(-13) = 16380$

Ans.

QUESTION 15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given (*i*) Area : $25a^2 - 35a + 12$ (ii) Area : $35y^2 + 13y - 12$ SOLUTION. Possible length and breadth of the rectangle are the factors of its given area. Area = $25a^2 - 35a + 12 = 25a^2 - 15a - 20a + 12$ (*i*) = 5a(5a-3) - 4(5a-3) = (5a-3)(5a-4)Hence, possible length and breadth are (5a - 3) and (5a - 4) units. Area = $35y^2 + 13y - 12 = 35y^2 + 28y - 15y - 12$ *(ii)* = 7y(5y+4) - 3(5y+4) = (5y+4)(7y-3)Hence, possible length and breadth are (5y + 4) and (7y - 3) units. Ans. **QUESTION 16.** What are the possible expressions for the dimensions of the cuboids whose volumes are given below: (*i*) *Volume* : $3x^2 - 12x$ (*ii*) *Volume* : $12ky^2 + 8ky - 20k$ Possible expressions for the dimensions of the cuboids are the factors of their volumes. SOLUTION. Volume = $3x^2 - 12x = 3x(x - 4)$ *(i)* Hence, possible dimensions of cuboid are 3, x and (x - 4) units. Volume = $12ky^2 + 8ky - 20k = 4k(3y^2 + 2y - 5)$ *(ii)* $= 4k(3y^2 - 3y + 5y - 5)$ = 4k[3y(y-1) + 5(y-1)] = 4k(y-1)(3y+5)Hence, possible dimensions of cuboid are 4k, (y - 1) and (3y + 5) units. Ans.